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Abstract
We discuss magnetic Schrödinger operators perturbed by measures from the
generalized Kato class. Using an explicit Krein-like formula for their resolvent,
we prove that these operators can be approximated in the strong resolvent sense
by magnetic Schrödinger operators with point potentials. Since the spectral
problem of the latter operators is solvable, one in fact gets an alternative way
to calculate discrete spectra; we illustrate it by numerical calculations in the
case when the potential is supported by a circle.

PACS numbers: 03.65.Ge, 03.65.Db, 02.30.Tb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Schrödinger operators are used for modelling a particle confined in a quantum-mechanical
system. Depending on a potential which describes how the particle interacts with its
environment, one can consider a wide range of physical situations. In this paper, we are
particularly interested in potentials in dimension 2 supported by zero measure sets; the supports
could be for example graphs, curves or points.

The motivation to study such operators is based on the fact that they represent simple
mathematical models of various nano-structures such as quantum wires, photonic crystals,
quantum dots, etc. One possible way to describe them is via quantum graphs; it means that
one considers ordinary differential equations on the graph edges, which are coupled through
boundary conditions at the graph vertices so that the resulting operator is self-adjoint, see [K]
or [KS]. The operators we are going to deal with yield an alternative approach. The particle
is not confined to the graph, but it moves in its vicinity if the potentials are attractive. Hence,
the latter model is in a sense more realistic; for example, it enables tunnelling between the
ends of an almost closed loop.

We aim to prove a limit relation between two classes of operators in L2(R2) in the
presence of a magnetic field: those with attractive potentials supported by a curve or a graph
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on one side, and operators with point potentials on the other side. The crucial feature of
the latter operators is the solvability of their spectral problem; if the number of potentials is
finite, then the essential spectrum stays unchanged and the discrete spectrum can be calculated
numerically by solving an implicit equation. Therefore, if we are able to find a sequence
of point potential operators which approximates the given operator, we get an approximate
method to calculate its discrete spectrum.

In fact, we will show that the approximation works for a larger family of potentials than
just the ones supported by a curve. The regular potentials with the Kato property will be also
included; that is why we speak about a generalized Kato class and potentials are replaced by
more general measures. For a given measure m from the generalized Kato class, it is possible
to define the operator −�+m via association with a closed and semi-bounded quadratic form,
see e.g. [BEKS] and [SV]. The second way to define Schrödinger operators with potentials
supported by zero measure sets is by prescribing the operator domains, see [Po1] for general
singular perturbations, and [AGHH] or [GHS] for point potentials; there the domains are given
by imposing a boundary condition on wavefunctions.

It was shown in [BFT] that the free Laplacian perturbed by a measure with the Kato
property can be approximated by point potential operators; in dimension 1, the convergence is
in the norm resolvent sense, while in dimension 3 it is in the strong resolvent sense. According
to [EN2], the situation in dimension 2 is similar to the three-dimensional case, moreover, the
authors presented several physical systems where the approximation is useful in spectral
calculations.

The present task is to prove that the approximation also works in the presence of a
magnetic field. It turns out that the main difficulty is not the proof itself (it easily carries
over from the non-magnetic case), but rather the lack of information about magnetic systems.
Namely, we first need to clarify the definition of perturbations by a measure in section 3. Then
in section 4, we derive an explicit formula for resolvents; that must be done without using
results from [BEKS] directly because their proof relies on the positivity preserving property
of the free Laplacian. Section 5 deals with point potentials in the presence of a magnetic field.
Finally, in section 6 we state the main approximation claim and we apply the approximation
to a simple example in section 7, where the magnetic field is homogeneous and the potential
is supported by a circle.

2. Magnetic Schrödinger operator in R
2

The free magnetic Schrödinger operator on L2(R2) is given by

(−i∇ − A(x))2,

where A(x) is a vector potential, whose components A1 and A2 belong to C∞(R2). According
to [CFKS, chapter 1.3], there exists a closed and positive quadratic form h,

D(h) = {ψ ∈ L2(R2) : (∂j − iAj)ψ ∈ L2(R2), j = 1, 2}

h(ϕ,ψ) =
2∑

j=1

((∂j − iAj)ϕ, (∂j − iAj)ψ)L2(R2).

We define the free magnetic Schrödinger operator H0 as the unique self-adjoint operator
associated with the form h, i.e.

D(H0) ⊂ D(h)

(H0ϕ,ψ) = h(ϕ,ψ) ϕ,ψ ∈ D(H0).

Moreover, from [CFKS, theorem 1.13] we know that C∞
0 (R2) is a form core of H0.
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By [BGP1, theorem 14], the resolvent (H0 − z)−1 has an integral kernel G0(x, y; z)

which is continuous away from the diagonal x = y. The singularity of G0(x, y; z) on the
diagonal is of the same type as the one for the non-magnetic Green function; following [BGP2,
theorem 15], it can be rewritten as

G0(x, y; z) = − 1

2π
ln(|x − y|) + Gren

0 (x, y; z),

where Gren
0 (·; z) is continuous on R

2 × R
2. Hence, it is possible to introduce the regularized

Green function

ξ(a; z) = lim
|x−a|→0

[
G0(x, a; z) +

1

2π
ln(|x − y|)

]
= Gren

0 (a, a; z). (1)

We will need this function when defining a perturbation by point potentials.
In the special case of a homogeneous magnetic field B, one can write the Green function

G0(z) explicitly. For example, in the symmetric gauge, A(x) = (− 1
2Bx2,

1
2Bx1

)
, B ∈ R, the

Green function has the following form, see [DMM]:

G0(x, y; z) = 1

4π
�B(x, y)�

( |B| − z

2|B|
)

U

( |B| − z

2|B| , 1; |B|
2

|x − y|2
)

, (2)

U is the irregular confluent hypergeometric function [AS, 13.1.33] and �B is a phase factor

�B(x, y) = exp

[
− iB

2
(x1y2 − x2y1) − |B|

4
|x − y|2

]
.

3. Perturbation by a measure

Next, we perturb the magnetic Hamiltonian H0 by a measure −γm in the following way:

Hγm = H0 − γm,

where m is a finite positive measure from the generalized Kato class, which means in dimension
2 that it satisfies

lim
ε→0

sup
x∈R

2

∫
B(x,ε)

|ln(|x − y|)|m(dy) = 0,

with B(x, ε) denoting the circle of radius ε centred at x. γ is a bounded and continuous function
mapping � := supp(m) into R+ := (0,∞), thus we consider only attractive potentials. An
example of such a measure is the Dirac measure, supported by a curve or graph; one can easily
check that the condition above holds.

By [SV, theorem 3.1], the potential generated by m is (−�) form bounded with
infinitesimally small relative bound. In order to define Hγm properly, we need a similar
form-boundedness with respect to H0. We cannot use the mentioned result directly as it was
formulated only for Dirichlet quadratic forms, i.e. the ones which are positivity preserving.
Instead, we can employ the diamagnetic inequality to pass from the non-magnetic system to
the magnetic one. In the following, ‖·‖p,q denotes the norm of an operator acting from Lp(R2)

to Lq(R2), 1 � p, q � ∞.

Lemma 1. Let m be a positive measure from the generalized Kato class w.r.t. −� and let H0

be the self-adjoint operator defined above. Then for each a > 0 there exists b ∈ R such that
the following inequality holds for any ψ ∈ C∞

0 (R2)∫
R

2
|ψ(x)|2m(dx) � ah(ψ,ψ) + b‖ψ‖2

2. (3)
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Proof. Since m belongs to the generalized Kato class w.r.t. −�, by [SV, theorem 3.1], the
following inequality is fulfilled for any ψ ∈ C∞

0 (R2):∫
R

2
|ψ(x)|2m(dx) � ω

[‖∇ψ‖2
2 + ζ‖ψ‖2

2

]
, (4)

where according to [SV, remark 1.7(b)], ω := ‖(−� + ζ )−1m‖∞ and thus it decays with ζ

growing to +∞. It was proved by approximating m by a sequence of non-negative potentials
Vn ∈ L2(R2) ∩ L∞(R2), such that

lim
n→∞

∫
R

2
|ψ(x)|2Vn(x) dx =

∫
R

2
|ψ(x)|2m(dx) ∀ψ ∈ C∞

0 (R2).

[SV, theorem 2.1] states that such a sequence exists, ‖(−� + ζ )−1Vn‖∞,∞ � ω, n ∈ N and
inequality (4) holds also when m(dx) is replaced by Vn(x) dx.

Let us write∫
R

2
|ψ(x)|2Vn(x) dx = ∥∥V

1
2

n (H0 + ζ )−
1
2 (H0 + ζ )

1
2 ψ

∥∥2
2

� ‖V
1
2

n (H0 + ζ )−
1
2 ‖2

2,2 [h(ψ,ψ) + ζ(ψ,ψ)] .

Repeating the proof of [AHS, theorem 2.5], we make use of the diamagnetic inequality [HSU]
in this form

|e−tH0ψ | � e−t (−�)|ψ | t > 0, ψ ∈ L2(R2).

Then from the expression

(H0 + ζ )−
1
2 = 1

�
(

1
2

)
∫

t−
1
2 e−tζ e−tH0 dt,

we get
∣∣(H0 + ζ )−

1
2 ψ

∣∣ � (−� + ζ )−
1
2 |ψ |, which in turn yields

∥∥V
1
2

n (H0 + ζ )−
1
2
∥∥2

2,2 �
∥∥V

1
2

n (−� + ζ )−
1
2
∥∥2

2,2 �
∥∥V

1
2

n (−� + ζ )−1V
1
2

n

∥∥
2,2.

The Stein interpolation theorem [RS, theorem IX.21] and the duality between ‖·‖1,1 and
‖·‖∞,∞ imply ∥∥V

1
2

n (H0 + ζ )−
1
2
∥∥2

2,2 � ‖Vn(−� + ζ )−1‖
1
2
1,1‖(−� + ζ )−1Vn‖

1
2∞,∞ � ω.

Finally, the convergence of Vn to m and the fact that ω → 0 as ζ → ∞ finish the proof. �

Since C∞
0 (R2) is dense in D(h), it is possible to define the linear operator Im

Im : D(h) 	→ L2(m) := L2(R2,m)

Imψ = ψ ∀ψ ∈ C∞
0 (R2).

Then (3) can be extended to whole D(h) with the function ψ on the lhs being replaced by
Imψ and thus Im is bounded. Now, consider quadratic form hγm given by

D(hγm) = D(h)

hγm(ψ, ϕ) =
∫

R
2
(∇ψ̄(x) + iA(x)ψ̄(x)).(∇ϕ(x) − iA(x)ϕ(x)) dx

−
∫

R
2
Imψ̄(x)Imϕ(x)γ (x)m(dx).

We employ the KLMN theorem, see [RS, theorem X.17], to conclude that hγm is lower semi-
bounded and closed. Thus, there exists a unique self-adjoint operator Hγm associated with
this form.
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The definition that we have presented above applies to both regular potentials m(dx) =
V (x) dx and potentials supported by zero measure sets �. In the latter case, there is an
alternative way to define operator Hγm via boundary conditions. Consider an operator which
behaves as H0 away from the set �

Ḣγmψ(x) = (−i∇ − A)2ψ(x) x ∈ R
2\�

with the domain consisting of functions ψ , such that H0ψ ∈ L2(R2\�), their restriction to
R

2\� is smooth and which are, moreover, continuous at � and have a jump in the normal
(w.r.t. curve �) derivatives,

∂ψ

∂n+
(x) − ∂ψ

∂n−
(x) = −γ (x)ψ(x), x ∈ �.

One can check that Ḣ γm is e.s.a. and by Green’s formula we have (Ḣ γmψ, g) = hγm(ψ, g)

for all ψ ∈ D(Ḣ γm) and g ∈ C∞
0 (R2). Since C∞

0 (R2) is a core of hγm, the closure of Ḣ γm

can be identified with Hγm. This definition is applicable to curves � which do not have any
cusps and only a finite number of smooth edges meet in a node.

4. The Krein-like formula

Throughout this work, a crucial role will be played by Krein’s formula which gives us an
explicit expression for the resolvent of Hγm. Originally, the formula was used for Hamiltonians
perturbed by a finite number of point interactions, later, it was generalized to a large family of
operators, see e.g. [Po1].

In paper [BEKS], the authors derived the resolvent for the free Laplacian perturbed by the
measure m from the generalized Kato class, using the positivity property of the Green function
of the Laplacian. Although their proof does not apply to magnetic systems, one would still
expect that the resolvent corresponding to the operator H0 with perturbed by m should look
the same in the presence of a magnetic field

R(z) = R0(z) + Rdx,m(z)

[
1

γ
− Rm,m(z)

]−1

Rm,dx(z), (5)

where Rµ,ν(z) is an integral operator acting from L2(R2, ν) to L2(R2, µ), µ and ν are two
arbitrary positive Radon measures and

Rµ,ν(z)ψ(x) =
∫

G0(x, y; z)ψ(y)ν(dy) µ − a.e.

Note that Rm,dx(z) = ImR0(z).
To prove that (5) is indeed the resolvent of Hγm, we first show several auxiliary results.

Lemma 2. Assume that the measure m is finite, i.e.
∫

m(dx) = lm < ∞ and z ∈ ρ(H0). Then
Rdx,m(z̄) = (Rm,dx(z))

∗.

Proof. For z ∈ ρ(H0), the operator Rm,dx(z) is bounded and so is its adjoint. We have to
check that in the expression

I = (f, Rm,dx(z)ψ)L2(m) =
∫

m(dy)

∫
dx f̄ (y)G0(y, x; z)ψ(x)

one can interchange the order of integration. This is possible if the following integral is finite

I � I1 :=
∫ ∫

m(dy) dx|f (y)||G0(y, x; z)||ψ(x)|.
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By Kato’s inequality (see [BGP1]), one has

|G0(x, y; z)| � K(x, y; z) = K(x − y, 0; z) a.e. x, y,∈ R
2

for z sufficiently large negative, K is the Green function of the free Laplacian −� in L2(R2).
Thus I1 is dominated by ‖ψ‖L2(R2)l

1/2
m ‖K(z)‖L2(R2)‖f ‖L2(m). Together with the observation

G0(x, y; z) = G0(y, x; z̄) (which is a consequence of G0(z) being a Carleman kernel, see
[BGP1, theorem 16] and [GMC, theorem 1]) it implies the claim for large negative z. For any
other z ∈ �(H0), it follows from the first resolvent formula

Rdx,m(z) = Rdx,m(z0) + (z − z0)R0(z)Rdx,m(z0). �

Lemma 3. Consider mappings Im and Rm,dx(z) defined as above and let z0 < 0 be such that

(ψ, ϕ)z0 := h(ψ, ϕ) − (z0ψ, ϕ)

is an inner product in D(h). (Recall that h is lower semi-bounded and closed form, thus D(h)

with (·, ·)z0 is a Hilbert space.) Then I ∗
m = (Rm,dx(z0))

∗.

The lemma was proved in [B], let us present its proof for the sake of completeness.

Proof. As both operators Im and Rm,dx(z0) are bounded, their adjoint operators are bounded,
too. For any f ∈ L2(m) and ψ ∈ L2(R2), we have

(ψ, I ∗
mf )L2(R2) = h(R0(z0)ψ, I ∗

mf ) − (z0R0(z0)ψ, I ∗
mf )L2(R2)

= (R0(z0)ψ, I ∗
mf )z0 = (ImR0(z0)ψ, f )L2(m)

= (Rm,dx(z0)ψ, f )L2(m) = (ψ, (Rm,dx(z0))
∗f )L2(R2).

In the first line, we have used the fact that R0(z0) is the resolvent corresponding to the
Hamiltonian H0, associated with h. In the second line, we have simply employed the definition
of adjoint operator I ∗

m; since Im maps from D(h) with the inner product (·, ·)z0 to L2(m) it
reads (φ, I ∗

mf )z0 = (Imφ, f )L2(m), φ ∈ D(h) and ∈ L2(m). �

Lemma 4. Assume z ∈ ρ(H0) and f ∈ L2(m). Then Rdx,m(z)f ∈ D(h) and

h(Rdx,m(z)f, ψ) − (zRdx,m(z)f, ψ)L2(R2) = (f, Imψ)L2(m)

for all ψ ∈ D(h).

Proof. Using the first resolvent formula, one has

Rdx,m(z)f = Rdx,m(z0)f + (z − z0)R0(z)Rdx,m(z0)f,

where z0 is the same as in the previous lemma; then the first term equals I ∗
mf and hence it

belongs to D(h). Also the second term belongs to D(h) as the free resolvent R0(z) maps to
D(H0) ⊂ D(h).

To prove the second claim, we substitute Rdx,m(z)f from the above formula and we use
lemma 4,

h(Rdx,m(z)f, ψ) − (zRdx,m(z)f, ψ)L2(R2)

= (Rdx,m(z0)f, ψ)z0 − ((z − z0)Rdx,m(z0)f, ψ)L2(R2)

+ h((z − z0)R0(z)Rdx,m(z0)f, ψ) − (z(z − z0)R0(z)Rdx,m(z0)f, ψ)L2(R2)

= (I ∗
mf,ψ)z0 − ((z − z0)Rdx,m(z0)f, ψ)L2(R2) + ((z − z0)Rdx,m(z0)f, ψ)L2(R2)

= (f, Imψ)L2(m). �
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Theorem 5. Suppose that 1/γ − Rm,m(z) is invertible. Then R(z) given by (5) is defined on
L2(R2) and it is the resolvent of Hγm.

Proof. Take arbitrary ψ ∈ L2(R2) and ϕ ∈ D(h), then by lemma 4 and Krein’s formula (5)
R(z)ψ belongs to D(h). We have to check that

I := hγm(R(z)ψ, ϕ) − (zR(z)ψ, ϕ)L2(R2) = (ψ, ϕ)L2(R2).

Denote g = (1/γ − Rm,m(z))−1Rm,dx(z)ψ , then

I = h(R0(z)ψ, ϕ) − (zR0(z)ψ, ϕ)L2(R2) − (ImR0(z)ψ, γ Imϕ)L2(m)

+ h(Rdx,m(z)g, ϕ) − (zRdx,m(z)g, ϕ)L2(R2) − (ImRdx,m(z)g, γ Imϕ)L2(m)

According to lemma 4, the fourth and fifth terms give together (g, Imϕ)L2(m), so one gets

I = (ψ, ϕ)L2(R2) +

(
−Rm,dx(z)ψ +

1

γ
g − Rm,m(z)g, γ Imϕ

)
L2(m)

,

finally, employing the definition of g shows that the second term equals zero. �

One can fulfil the hypothesis that the operator 1/γ − Rm,m(z) is invertible easily by
choosing sufficiently large negative z; it follows from the following lemma, see [BEKS,
corollary 2.2]. In the following, ‖T ‖p,q denotes the norm of an operator T acting from Lp(m)

to Lq(m).

Lemma 6. There exists z̃ < 0 such that ‖γRm,m(z)‖2,2 < 1 for all z < z̃.

Proof. Since the measure m belongs to the Kato class and γ is bounded, we can find 0 < a < 1
and 0 < b < ∞, such that∫

R
2
|Imψ(x)|2(1 + γ (x)2)m(dx) � ah(ψ,ψ) + b(ψ,ψ)L2(R2)

for all ψ ∈ D(h). We put z̃ = −b/a, the rhs of the inequality then reads

a(ψ,ψ)z̃ := ah(ψ,ψ) − a(z̃ψ,ψ)L2(R2).

Next, we take any f ∈ L2(m) and z < z̃ and introduce a set

Sz := {ψ ∈ D(h) : (ψ,ψ)z = 1}.
Consequently, we have∫

R
2
|ImRdx,m(z)f (x)|2γ 2(x)m(dx) � a(Rdx,m(z)f, Rdx,m(z)f )z

� a sup
ψ∈Sz

|(Rdx,m(z)f, ψ)z|2 = a sup
ψ∈Sz

|(f, Imψ)L2(m)|2

� a

∫
|f (x)|2m(dx) sup

ψ∈Sz

∫
|Imψ(x)|2m(dx)

� a‖f ‖2
L2(m)a sup

ψ∈Sz

(ψ,ψ)z = a2‖f ‖2
L2(m).

�

For further use, we rewrite the Hamiltonian Hγm into the form H0 − 1
α
µ, where

µ = γm∫
γm

, α = 1∫
γm

.
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Since both function γ and measure m are positive, the coupling constant α and normalized
measure µ are positive, too. The resolvent R(z) = (Hγm − z)−1 then acts on arbitrary
ψ ∈ L2(R2) as follows:

R(z)ψ = R0(z)ψ + Rdx,µ(z)[α − Rµ,µ(z)]−1Rµ,dx(z)ψ. (6)

Lemma 6 stays valid when one puts µ and 1/α instead of m and γ , respectively, therefore∥∥ 1
α
Rµ,µ(z)

∥∥
2,2 is less than 1 for sufficiently large negative z. One can prove the same about

the norm ‖ · ‖∞,∞ using the Kato property of µ. From now on we consider only large negative
z so that both norms above are less than 1. The second term on the rhs of (6) can be substituted
by Rdx,µ(z)σ , where σ ∈ L2(µ) is the unique solution to the equation

[α − Rµ,µ(z)]σ = Rµ,dx(z)ψ µ − a.e. (7)

By [BGP1, theorem 16], domain D(H0) is embedded into the space of continuous and bounded
function on R

2, thus R0(z)ψ is bounded and continuous in R
2 and the same is of course true

for function Rµ,dx(z)ψ on �. Adding the information about norms of 1
α
Rµ,µ(z), we may

conclude that σ is bounded and continuous on � as well.

5. Point potentials

Next consider a magnetic Schrödinger operator HY,α with finitely many-point potentials placed
at points a ∈ Y ⊂ �, |Y | denotes the number of potentials. The operator is defined via self-
adjoint extensions; away from the points from Y it behaves as the free operator H0 and the
wavefunctions from its domain must have the following behaviour in the vicinity of each point
a ∈ Y ,

ψ(x) = ln|x−a|L0(ψ, a) + L1(ψ, a) + O(|x − a|) (8)

with coefficients L0 and L1 fulfilling the boundary condition

L1(ψ, a) + 2πα(a)L0(ψ, a) = 0 ∀a ∈ Y.

For further details concerning point potentials, see e.g. [AGHH] for the non-magnetic case
and [GHS] for the magnetic case. In general, one can choose any real number α(a) for each
potential independently, here, we make a special choice α(a) = α|Y | for all a ∈ Y , with α

defined in the previous subsection.
The resolvent (HY,α − z)−1 is given by Krein’s formula,

(HY,α − z)−1ψ(x) = R0(z)ψ(x) +
∑

y,y ′∈Y

[�Y,α(z)]−1(y, y ′)G0(x, y; z)R0(z)ψ(y ′), (9)

where �Y,α(z) is a matrix |Y | × |Y |,

�yy ′ =
{|Y |α − ξ(y; z) y = y ′

−G0(y, y ′; z) y �= y ′,

ξ(y; z) is the regularized Green function (1). For a homogeneous magnetic field B, we
can calculate ξ(y; z) explicitly; it does not depend on the potential position y and it equals
− 1

4π

[
ψ

( |B|−z

2|B|
)

+ 2CE + ln
( |B|

2

)]
, with CE denoting the Euler constant. The second term on

the rhs of (9) can be rewritten as
∑

y∈Y G0(x, y; z)qy , where q is the |Y |-dimensional vector
which solves

R0(z)ψ(y) =
∑
y ′∈Y

(�Y,α(z))(y, y ′)qy ′ ∀y ∈ Y. (10)

One possible way to make matrix � invertible is to take a sufficiently large set Y.
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Lemma 7. Let Yn be a sequence of subsets of � with |Yn| → ∞ as n → ∞, and assume that
for some α̃ < α, we have

sup
n∈N

1

|Yn| sup
x∈Yn

∑
y∈Yn\{x}

|G0(x, y; z)| � α̃ < α.

Then there exist C > 0 and n0 ∈ N, such that �Yn,α(z) is invertible and∥∥∥∥∥
(

1

|Yn|�Yn,α(z)

)−1
∥∥∥∥∥

2,2

< C

for all n � n0.

Here and in the following section, the symbol ‖T ‖p,q denotes the operator norm of a matrix
T, acting from �p(Y ) to �q(Y ) and correspondingly, ‖·‖p is the norm in �p(Y ).

Proof. Let us split the matrix �Yn,α(z)/|Yn| into the diagonal and non-diagonal part. On
the diagonal, ξ(·; z) stays bounded because it is a continuous function on a compact set �.
Therefore, the diagonal part behaves as (α + O(|Yn|−1))δyy ′ for large n, its norm in �2(Yn)

converges to α and so it is invertible. The non-diagonal part, denoted by Rn, is given by
−1/|Yn|G0(y, y ′, z)(1 − δyy ′). Using the Schur–Holmgren bound (see [AGHH, appendix C]),
we arrive at

‖Rn‖2,2 � 1

|Yn| sup
x∈Yn

∑
y∈Yn\{x}

|G0(x, y; z)| � α̃ < α,

hence the whole matrix is invertible. �

6. Approximation

Now we are ready to formulate the main approximation claim. Its proof follows closely the
one in [BFT].

Theorem 8. Let � be a compact and non-empty set in R
2 and let m be a finite positive measure

with � := supp(m), which belongs to the Kato class. Let γ be a bounded and continuous
function on �, which attains only positive values. Consider sufficiently large negative z such
that equation (7) has a unique solution σ with a bounded and continuous version on �.
Suppose further that there is a sequence of sets Yn ⊂ � with |Yn| → ∞ as n → ∞ and
satisfying following three conditions:

1

|Yn|
∑
y∈Yn

f (y) →
∫

f (y)µ(dy) (11)

for any bounded and continuous function f on �,

sup
n∈N

1

|Yn| sup
x∈Yn

∑
y∈Yn\{x}

|G0(x, y; z)| � α̃ (12)

for some α̃ < α, and finally

sup
x∈Yn

∣∣∣∣∣∣
1

|Yn|
∑

y∈Yn\{x}
σ(y)G0(x, y; z) − (Rdx,µ(z)σ )(x)

∣∣∣∣∣∣ → 0 (13)

for n → ∞. Then operators HYn,α converge to Hγm in the strong resolvent sense as n → ∞.
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Proof. For self-adjoint operators, the weak resolvent convergence implies the strong resolvent
convergence, thus it is enough to prove that

In := (
φ,

(
HYn,α − z

)−1
ψ − (Hγm − z)−1ψ

)
L2(R2)

→ 0 as n → ∞.

Employing the alternative expressions for both resolvents, one gets

In =

φ,

∑
y∈Yn

G0(·, y; z)qy − Rdx,µ(z)σ




L2(R2)

,

where q and σ are given as solutions to equations (10) and (7), respectively.

In =
∑
y∈Yn

R0(z)φ(y)qy − (Rµ,dx(z)φ, σ )L2(µ)

=
∑
y∈Yn

R0(z)φ(y)

(
qy − 1

|Yn|σ(y)

)

+
∑
y∈Yn

R0(z)φ(y)
1

|Yn|σ(y) −
∫

IµR0(z)φ(y ′)σ (y ′)µ(dy ′).

Since R0(z)φ has a bounded and continuous version (and it can be identified with IµR0(z)φ),
by hypothesis (11) the last two terms vanish in the limit and for the first term we only have to
show that ∥∥∥∥ v(n)

|Yn|
∥∥∥∥

1

→ 0, v(n)
y := |Yn|qy − σ(y).

Comparing equations (10) and (7), one obtains the following expression for v(n),
∑
y ′∈Yn

1

|Yn|
(
�Yn,α(z)

)
(y, y ′)v(n)

y ′ = σ(y)

|Yn| ξ(y; z) +
1

|Yn|
∑
y ′ �=y

G0(y, y ′; z)σ (y ′)

−
∫

IµG0(y, y ′; z)σ (y ′)µ(dy ′).

Last two terms on the rhs vanish because of the hypothesis (13) and also the first term goes
to zero as n → ∞ since the numerator is a bounded function of y. So when we denote the
vector with elements given by the rhs as w(n), then the norm ‖w(n)‖∞ tends to zero.

By hypothesis (12) and lemma 7, matrix �Yn,α(z)/|Yn| is invertible and the operator norm
of its inverse in �2(Yn) is bounded by some C. Hence, we can write

1

|Yn| ‖v
(n)‖1 � 1

|Yn|

∥∥∥∥∥
(

1

|Yn|�Yn,α(z)

)−1
∥∥∥∥∥

∞,1

‖w(n)‖∞ � 1

|Yn| |Yn|C‖w(n)‖∞

since ‖·‖∞,1 � |Yn|‖·‖2,2 for operators on C
|Yn|. �

We have formulated the approximation result for the two-dimensional situation, however,
it could be proved also in dimension 3, provided several modifications are made. First of all,
the generalized Kato class is different in R

3. The measure m belongs to it if

lim
ε→0

sup
x∈R

3

∫
B(x,ε)

1

|x − y|m(dy) = 0,

where B(x, ε) is the sphere of radius ε centred at x. A potential with a zero measure support
fulfils the condition above only if the codimension of its support is equal to 1. Therefore, one
may approximate for example the potentials supported by compact surfaces.
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The main technical difficulty in dimension 3 comes from the fact that the Green function
of a magnetic Schrödinger operator has a divergent term which depends on the given vector
potential, see e.g. [BGP2, section 5]. Correspondingly, the vector potential also enters the
definition of point potentials, hence the definition has to be modified as in [EN1, section 4].
Moreover, the divergent term is not logarithmic, hence the term ln |x − a| in (8) must be
replaced by 1/|x − a|.

7. Application

One motivation for this paper was to obtain an alternative method to calculate discrete spectra.
We have proved that any operator Hγm, defined as H0 perturbed by measure m with the Kato
property, can be approximated by point potential Hamiltonians in the strong resolvent sense.
Hence for each eigenvalue of Hγm there exists a sequence of eigenvalues of the latter operators
converging to it.

It is very natural to apply the approximation to a system whose spectral problem is
exactly solvable so that we can compare the exact and approximate eigenvalues, obtained by
numerical calculation. As an essential prerequisite for numerical calculations is to have an
explicit formula for the Green function G0(z), we restrict the application only to the case of a
homogeneous magnetic field B. Then one can employ expression (2).

To demonstrate how one can use the approximation to calculate discrete spectra, let us
present the following example. Suppose that the potential is attractive and constant and it is
supported by a circle with radius R. The potential can be thus described by two parameters
R > 0 and γ > 0. The easiest choice of point potential operators is the following: we place N
points equidistantly along the circle and put α = N/(2πRγ ). The spectrum of Hγm consists
of Landau levels

σess(Hγm) = {|B|(2m + 1) : m = 0, 1, . . .}
and eigenvalues which have split off from the Landau levels because of the presence of the
potential. Since we consider the potential being attractive, the eigenvalues are below the level
they have arisen from (and moving further down as the coupling constant γ grows.)

To find the eigenvalues explicitly, one has to decompose the operator into angular
momentum subspaces and then to calculate the eigenvalues numerically by solving an implicit
equation in each subspace, see [ET]. The resulting picture is that there is one sequence of
eigenvalues in each gap between two adjacent Landau levels and below the lowest one, with
the limit point at the upper Landau level.

Figure 1 depicts the comparison of the approximate and exact eigenvalues in two lowest
gaps for two situations which differ only in the coupling constant γ . Figure 1(b) corresponds
to a stronger attractive potential γ = 3, therefore the eigenvalues are further from the Landau
levels than those in figure 1(a), where γ = 1. We observe that the approximate eigenvalues
tend to the exact ones as the number of point potentials grows and that the convergence is
slower when the coupling is stronger. One can roughly estimate that the convergence rate is of
the type cN−a , where according to numerical calculations, a appears to be around 1/2, while
coefficient c depends strongly on the coupling constant γ .

A close inspection of the eigenfunctions of the point potential operators would reveal that
they have logarithmic peaks at the potential sites, since they are given as linear combinations
of free Green functions, see e.g. [AGHH, chapter II]. Although by [Po2, theorem 3.4], these
wavefunctions yield an approximation of wavefunctions of Hγm, the peaks are of course absent
in exact eigenfunctions. We believe that this fact is partly responsible for the slow convergence
of the approximate energies of the bound states to the exact ones.
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Figure 1. The dependence of the approximate eigenvalues on the number of point potentials for
B = 1, R = 2 and γ = 1 (a) and γ = 3 (b). The dashed lines represent the exact eigenvalues of
Hγm.

All the features we have described were observed in the non-magnetic case, see [EN2],
with the exception that there one deals only with one gap (−∞, 0) and the number of
eigenvalues in the gap is finite. In the absence of the magnetic field the ground state of
Hγm corresponds to angular momentum l = 0, the remaining bound states correspond to ±l

and they are double degenerate. In the magnetic field there is no such degeneracy; eigenvalues
for angular momenta with opposite signs are different, because there is an extra angular
momentum coming from the magnetic field. As figure 1(b) suggests, also the approximate
eigenvalues (and in particular, their dependence on the number of point potentials) behave
differently: the eigenvalue crossing the Landau level B = 1 tends to the eigenvalue of Hγm

for l = 1, while the eigenvalue for l = −1 is the limit point of the second lowest approximate
eigenvalue.
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